Abstract

A CMOS low-power 8-channel electro-encephalograph front-end circuit is presented. The single-stage instrumental amplifier in each channel employs current-reuse and chopper-stabilization technology to improve power and noise performance. An output-current-tuning ripple reduction loop (RRL) is designed to reduce the intrinsic offset of the instrumental amplifier and attenuate the chopping ripple. The proposed circuit is implemented in standard 0.18 μm CMOS process. The measured mid-band gain of the front-end is 72.5/75/78.2/81 dB and the high-pass cut-off frequency is 110/150/160/210 Hz. An input-referred noise of 0.8 μVRMS (< 100 Hz), 114 dB CMRR and 102 dB PSRR are achieved at a power consumption of 7.4 μW per channel. The proposed RRL helps to suppress the chopping ripple to a level sufficiently lower than the indigenous circuit noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.