Abstract

In this paper, we describe a novel low power, compact, current-mode spike detector circuit for real-time neural recording systems where neural spikes or action potentials (AP) are of interest. Such a circuit can enable massive compression of data facilitating wireless transmission. This design can generate a high signal-to-noise ratio (SNR) output by approximating the popularly used nonlinear energy operator (NEO) through standard analog blocks. We show that a low pass filter after the NEO can be used for two functions-(i) estimate and cancel low frequency interference and (ii) estimate threshold for spike detection. The circuit is implemented in a 65 nm CMOS process and occupies 200 μm × 150 μ m of chip area. Operating from a 0.7 V power supply, it consumes about 30 nW of static power and 7 nW of dynamic power for 100 Hz input spike rate making it the lowest power consuming spike detector reported so far.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call