Abstract
A new vernier delay line time-to-digital converter (TDC) capable of achieving an ultra-fine resolution at an ultra-low supply voltage is designed in 180 nm / 1.8 V CMOS process. The proposed TDC named as capacitively boosted vernier delay line TDC (CB-VDL TDC) consists of a vernier delay line built using capacitive boosting delay buffers capable of amplifying the input time signals higher than the supply and below the ground for driving the subsequent buffers with improved strength even at an ultra-low operating supply voltage. The proposed 6-bit CB-VDL TDC achieves an ultra-fine resolution of 1.74 ps while operating at an ultra-low supply of 0.6 V and consumes a power of 217.43 μW at a sampling frequency of 50 MHz, thus making it highly suitable for applications such as low power all-digital phase locked loops, time-of-flight measurement systems and time-mode analog-to-digital converters. The TDC core occupies an area of 1.225 mm2 including the on-chip calibration unit in 180 nm CMOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.