Abstract

This paper presents a low-voltage and power-efficient 10 bit successive-approximation register (SAR) analog-to-digital converter (ADC). The input-range-adaptive (IRA) switching method is proposed to reduce the average switching power of capacitive digital-to-analog convertor (DAC) by 91% compared with the conventional approach. By utilizing the comparator as a voltage-to-time converter (VTC) with a time-domain quantizer, the implemented early-late (E/L) detection circuit, the input range is detected to eliminate the unnecessary DAC switching power efficiently. A prototype ADC chip is fabricated in 90 nm CMOS technology with an active area of 0.038 mm2. At 0.35-to-0.5 V supply voltage and 0.3-to-2 MS/s sampling rate with a Nyquist input, the ADC achieves a signal-to-noise-plus-distortion ratio (SNDR) of 55.5 dB to 56.3 dB and a corresponding effective number of bits (ENOB) of 8.92 bit to 9.06 bit respectively with a power consumption of $0.3~\mu \text {W}$ to $2.5~\mu \text {W}$ and a resulting figure of merit (FoM) from 1.94 fJ/conversion-step to 2.32 fJ/conversion-step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.