Abstract
An energy-efficient wireless body-area-network (WBAN) transceiver is implemented in 0.18-μm CMOS technology with 1-V supply voltage. For the low energy consumption, the body channel communication (BCC) PHY is utilized with the theoretical results of Maxwell's equation analysis behind the BCC. Based on the channel analysis, the resonance matching (RM) and contact impedance sensing (CIS) techniques are proposed to enhance the quality of the body channel. A double-FSK modulation scheme is adopted with high scalability to fulfill the IEEE 802.15.6 Task Group specifications. In addition, a low-power double-FSK transceiver is implemented by five circuit techniques: 1) a reconfigurable LNA with CIS; 2) a current-reuse wideband demodulator; 3) a divider-based local oscillator (LO) generation with duty-cycle correction in the receiver; 4) a reconfigurable driver with RM; and 5) a divider-based digital double-FSK modulator in the transmitter. As a result, fully WBAN compatible receiver and transmitter consume 2.4 and 2 mW, respectively, at a data rate of 10 Mb/s, corresponding to energy consumption of 0.24 nJ per received bit and 0.2 nJ per transmitted bit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.