Abstract

This brief describes a nanopower current reference circuit that has been fabricated in a standard 0.18-μm CMOS technology. The proposed circuit is an extension of the resistorless current reference circuit suggested by Oguey and Aebischer. This extension is a simple circuit arrangement that is capable of reducing the temperature coefficient (TC) of Oguey's circuit. The measurements have been done on ten prototypes in the temperature range of -40 °C to +85 °C. The measured average reference current is 92.2 nA with the average TC value of 177 ppm/°C. The measured average reduction of ≈68% has been achieved in TC value of Oguey's circuit after implementing the proposed arrangement. The operating supply voltage for the proposed circuit ranges from 1.25 to 1.8 V with the line sensitivity of 7.5%/V. The measured maximum average power dissipation of the proposed current reference circuit is 0.67 μW at the supply voltage of 1.8 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.