Abstract

This brief presents a low-power analog acquisition front-end circuit for a Wireless Body Area Network. This front-end system mainly consists of three parts, namely, chopped capacitively coupled instrumentation amplifier (CCIA), switched capacitor filter (SC-filter), and successive-approximation analog-to-digital converter. In order to reduce the power consumption, the supply voltage is scaled to 0.5 V, and all analog building blocks are biased in the subthreshold region. The chopper-stabilized technique is introduced to eliminate the $1/f$ noise, and a dc-servo loop is employed in the CCIA to suppress the electrode offset. A low-power second-order SC-filter is employed to eliminate the spikes produced by the CCIA, which also realizes a tunable gain to satisfy the specification. This low-power analog front-end circuit has been fabricated in a 0.18- $\mu\text{m}$ CMOS process. It occupies 1 mm2 and consumes a minimal 1.3 $\mu\text{W}$ at 0.5 V. It achieves a bandwidth of 0.5–250 Hz, a CMRR of 95 dB, and an input impedance of 48 $M\Omega$ , respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.