Abstract

An ultra-low-power transformer-based K-band receiver front-end is implemented in a 65 nm CMOS technology. For noise and input matching, a gate-to-source transformer-feedback technique is applied to the first-stage of the LNA. A transformer-based gain-boosting feedback technique is adopted in the second-stage of the LNA for further gain enhancement without additional dc power. Several transformers are utilized for inter-stage matching of the LNA and for single-to-differential LO/RF baluns of the ring mixer. By using forward-body-bias technique, the LNA operates at 0.33 V supply. For low-power receiver, a resistive ring mixer is adopted. The receiver demonstrates a 12.5 dB conversion gain (CG) and a 5.7 dB double-side band NF at IF frequency of 100 MHz with LO power of -10 dBm while consuming only 683 $\mu{\rm W}$ . To the best of our knowledge, the receiver demonstrates the lowest dc power consumption among recently reported K-band CMOS receiver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.