Abstract
A merged-diffusion dual-gate CMOS device model is presented in this paper. The proposed large-signal model consists of two intrinsic BSIM3v3 nonlinear models and parasitic components. The parasitic elements, including the substrate networks, the distributed resistances, and the inductances, are extracted from the measured S-parameters. In order to verify the model accuracy, a cascode configuration with the proposed dual-gate device is employed in a low-noise amplifier. The dual-gate model is also evaluated with power sweep and load-pull measurements. In addition, a doubly balanced dual-gate mixer is successfully demonstrated using the proposed model. The measured results agree with the simulated results using the proposed device model for both linear and nonlinear applications. The advanced large-signal dual-gate CMOS model can be further used as an RF sub-circuit cell for simplifying the design procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.