Abstract

In this paper, a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$0.18~{\mu }\text{m}$ </tex-math></inline-formula> n-type lateral DMOS (LDMOS) is researched. By optimized manufacture process and device structures, ultra-low specific on resistance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R} _{\mathrm {onsp}}$ </tex-math></inline-formula> ) is achieved. Pbody and n-type drift region are all full self-aligned implantation (FSAI). For different structures, the uniformities of the dc parameters affected by the process variation are researched. Experimental results show that: by optimizing manufacture process and device structures, the FSAI nLDMOS has competitive <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R} _{\mathrm {onsp}}$ </tex-math></inline-formula> compared with other technologies. For Breakdown voltage equals to 42 V and 52 V, the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R} _{\mathrm {onsp}}$ </tex-math></inline-formula> are 18.7 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{m}{\Omega \bullet }$ </tex-math></inline-formula> mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and 30 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{m} {\Omega \bullet }$ </tex-math></inline-formula> mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , respectively. For FSAI-nLDMOS, both simulation and experiment demonstrated that the shift of the dc parameters generated by the process variation is superior to the other technologies. Moreover, only one n-type drift region with filed oxide is used. The device is fabricated in bulk-silicon without epitaxy. These leads to the low cost of the fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.