Abstract
We present an area-efficient neural signal-acquisition system that uses a digitally intensive architecture to reduce system area and enable operation from a 0.5 V supply. The architecture replaces ac coupling capacitors and analog filters with a dual mixed-signal servo loop, which allows simultaneous digitization of the action and local field potentials. A noise-efficient DAC topology and an compact, boxcar sampling ADC are used to cancel input offset and prevent noise folding while enabling “per-pixel” digitization, alleviating system-level complexity. Implemented in a 65 nm CMOS process, the prototype occupies 0.013 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> while consuming 5 μW and achieving 4.9 μVrms of input-referred noise in a 10 kHz bandwidth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Journal of Solid-State Circuits
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.