Abstract

A new type of gamma Gly-268 (GGA) to Glu (GAA) substitution has been identified in a homozygous dysfibrinogen by analyses of the affected polypeptide and its encoding gene derived from a 58 year-old man manifesting no major bleeding or thrombosis. The functional abnormality was characterized by impaired fibrin assembly most likely due to failure to construct properly aligned double-stranded fibrin protofibrils. This presumption was deduced from the following findings: (1) Factor XIIIa-catalyzed cross-linking of the fibrin gamma-chains progressed in a normal fashion, indicating that the contact between the central E domain of one fibrin monomer and the D domain of another took place normally; (2) Nevertheless, factor XIIIa-catalyzed cross-linking of the fibrinogen gamma-chains was obviously delayed, suggesting that longitudinal association of D domains of different fibrin monomers, ie, D:D association was perturbed; (3) Plasminogen activation catalyzed by tissue-type plasminogen activator was not as efficiently facilitated by polymerizing fibrin monomer derived from the patient as by the normal counterpart. Therefore, gamma Gly-268 would not be involved in the 'a' site residing in the D domain, which functions as a complementary binding site with the thrombin-activated 'A' site in the central E domain, but would be rather involved in the D:D self association sites recently proposed for human fibrinogen. Thus, the gamma Glu-268 substitution newly identified in this homozygous dysfibrinogen seems to impair proper alignment of adjacent D domains of neighboring fibrin molecules in the double-stranded fibrin protofibril, resulting in delayed fibrin gel formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.