Abstract

ABSTRACTAlthough the Organization for Economic Cooperation and Development (OECD) has adopted several in vitro methods with reasonable predictive capacity, alternative methods for identifying skin sensitizers and non-sensitizers with reliability and simplicity are still required for more efficient and economic prediction. The present study was to design an in vitro system with the use of a β-galactosidase-expressing E. coli culture for simpler but sufficiently accurate classification of skin sensitizers and non-sensitizers. A LacZ gene-containing E. coli strain that is capable of producing β-galactosidase enzyme was induced by isopropyl β-D-1-thiogalactopyranoside with concomitant treatment with test chemicals. After 6-hr incubation, cells were lysed and β-galactosidase enzyme activity was monitored colorimetrically by using O-nitrophenyl-D-galactopyranoside as a substrate. Following optimization of several experimental conditions, 22 skin sensitizers and 11 non-sensitizers were examined to assess predictive capacity of this method. The results indicated that predictivity was as follows: 90.9% sensitivity, 81.8% specificity, and 87.9% accuracy, when 17.3% of control activity was used as the cut-off value to separate sensitizers from non-sensitizers. Data suggested that the current bacterial system expressing β-galactosidase may serve as a useful alternative test for classifying skin sensitizers and non-sensitizers, without the utilization of animals or mammalian cell cultures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call