Abstract

Novel chiral π–copper(II)−π complex catalyzed enantioselective α-chlorination and -bromination of N-acyl-3,5-dimethylpyrazoles are described. The π–copper(II)−π complexation of Cu(OTf)2 with 3-(2-naphthyl)-l-alanine-derived amides greatly increases the Lewis acidity and triggers the in situ generation of enolate species without an external base, which has a suppressing effect for α-chlorination and -bromination due to undesired halogen bonding. This strategy provides facile access to α-halogenated compounds in high yield with excellent enantioselectivity. X-ray crystallographic and ESR analyses of the catalyst complexes suggest that the release of two counteranions (2TfO–) from the copper(II) center might be crucial for the efficient activation of N-acyl-3,5-dimethylpyrazoles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.