Abstract

In this paper we provide a rigorous asymptotic analysis of a phase-field model used to simulate pressure-driven fracture propagation in poro-elastic media. More precisely, assuming a given pressurep ∈ W1,∞ (Ω) we show that functionals of the form$$ E(\vec{u})={\int }_{\mathrm{\Omega }} e(\vec{u}):\mathbb{C}e(\vec{u})+p\nabla \cdot \vec{u}+\left\langle \nabla p,\vec{u}\right\rangle\enspace \mathrm{d}x+{\mathcal{H}}^{n-1}({J}_{\vec{u}}),\enspace \vec{u}\in \mathrm{G}{SBD}(\mathrm{\Omega })\cap {L}^1(\mathrm{\Omega };{\mathbb{R}}^n) $$can be approximated in terms of Γ-convergence by a sequence of phase-field functionals, which are suitable for numerical simulations. The Γ-convergence result is complemented by a numerical example where the phase-field model is implemented using a Discontinuous Galerkin Discretization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.