Abstract

This work introduces a β-cyclodextrin/multi-walled carbon nanotube (β-CD/MWCNT)–modified microelectrode array (MEA) for rapid determination of imidacloprid in vegetables. The MEA, fabricated on a silicon wafer, contains 20 parallel-connected working electrodes, a counter electrode and a reference electrode. The MWCNT is drop-casted onto the working electrode area, and β-CD is decorated onto the MWCNT layer with electropolymerization. Electrochemical behaviors of the as-fabricated sensor are investigated with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Obtained results validate that the proposed sensor has a large electroactive area, great electrical conductivity, and high sensitivity. During preparation and application of the sensor, 0.5 mg mL−1 MWCNT suspension and phosphate-buffered solution (0.1 mol L−1, pH = 7) are found to optimize experimental conditions. Under optimized conditions, a wide linear range as 5 to 100 μmol L−1 is obtained for target imidacloprid, and the limit of detection (LOD, S/N = 3) is well defined as 0.629 μmol L−1. The sensor is used for sensing imidacloprid in cabbage, cucumber, and tomato. The results from this method are in accordance with high-performance liquid chromatography-mass spectrometry (HPLC-MS) data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.