Abstract

The ELI-NP facility will provide a monochromatic, high brilliance γ beam with tunable energy up to 19.5 MeV. The time structure of the beam consists of 32 pulses of 1 0 5 photons separated by 16 ns and delivered at repetition rate of 100 Hz. In order to match such unprecedented beam specifications and to measure its energy spectrum , intensity and space profile, a characterization system has been developed. This paper will focus on the working principle, the expected performances and the results of tests carried out on a low-Z sampling calorimeter , made of silicon detectors and polyethylene absorbers, which will measure the average beam energy and its intensity. The results of tests performed with an infrared pulsed laser have shown the capability of the detector to cope with the time structure of ELI-NP beam. Further tests carried out at the LABEC facility in Firenze have shown the excellent linearity of the silicon detectors in the energy range relevant to ELI-NP beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.