Abstract

Transition from latency to active replication is a crucial stage for the process of human immunodeficiency virus type 1 (HIV-1) infection and life cycle. HIV-1 replication in latently infected cells can be strongly induced by the cytokine tumor necrosis factor alpha (TNF-alpha) and the proliferation-arresting chemical sodium butyrate (NaB). We have investigated the ability of the drug 9-nitrocamptothecin (9NC), a potent cellular topoisomerase I (topo I) inhibitor currently in clinical trials in cancer patients, to regulate HIV-1 replication in latently infected lymphocytic ACH-2 cells on reactivation with either TNF-alpha or NaB. Treatment of ACH-2 cells with 9NC alone resulted in increased levels of viral transcripts, while there was a slight reduction or no change in the levels of host cell transcripts. However, pretreatment of ACH-2 cells with 9NC inhibited TNF-alpha-induced extracellular HIV-1 p24 levels up to approximately 95% and nearly 80% of the cell-associated viral RNAs. The quantitative decrease in viral products was concomitant with a decrease in cellular gene expression and induction of apoptosis in the host cells. 9NC blocked the infected cells at the boundary of the S and G2 phases, resulting in an accelerated apoptosis that was further enhanced with TNF-alpha treatment. Similar results were observed following concurrent exposure to TNF-alpha and 9NC, but 9NC failed to inhibit upregulation of HIV-1 mRNA in ACH-2 cells exposed to TNF-alpha before 9NC treatment. Further, 9NC had no inhibitory effect on NaB-induced apoptosis and upregulation of HIV-1 mRNA expression regardless of whether 9NC and NaB were used concurrently or in various treatment sequences. In uninfected lymphocytic CEM cells derived from a common parental cell line, a slight downregulation of cellular gene expression was detected along with low-level apoptosis. These results demonstrate that 9NC impairs TNF-alpha-induced, but not NaB-induced, HIV-1 activation, and suggest a means of inhibiting active HIV-1 viremia arising as a result of elevated TNF-alpha levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.