Abstract

Targeted diagnosis of specific human cancer types continues to be of significant interest in nuclear medicine. 99mTc is ideally suited as a diagnostic radiometal for in vivo tumor targeting due to its ideal physical characteristics and diverse labeling chemistries in numerous oxidation states. In this study, we report a synthetic approach toward design of a new tridentate amine ligand for the organometallic aqua-ion [99mTc(H2O)3(CO)3]+. The new chelating ligand framework, 2-(N,N'-Bis(tert-butoxycarbonyl)diethylenetriamine) acetic acid (DTMA), was synthesized from a diethylenetriamine precursor and fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy (1H and 13C). DTMA was conjugated to H2N-(X)-BBN(7-14)NH2, where X=an amino acid or aliphatic pharmacokinetic modifier and BBN=bombesin peptide, by means of solid phase peptide synthesis. DTMA-(X)-BBN(7-14)NH2 conjugates were purified by reversed-phase high-performance chromatography and characterized by electrospray-ionization mass spectrometry. The new conjugates were radiolabeled with [99mTc(H2O)3(CO)3]+ produced via Isolink radiolabeling kits to produce [99mTc(CO)3-DTMA-(X)-BBN(7-14)NH2]. Radiolabeled conjugates were purified by reversed-phase high-performance chromatography. Effective receptor binding behavior was evaluated in vitro and in vivo. [99mTc(CO)3-DTMA-(X)-BBN(7-14)NH2] conjugates displayed very high affinity for the gastrin releasing peptide receptor in vitro and in vivo. Therefore, these conjugates hold some propensity to be investigated as molecular imaging agents that specifically target human cancers uniquely expressing the gastrin releasing peptide receptor subtypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.