Abstract

In the previous study (Im et al., 2022), we revealed microplastic (MP) was accumulated and cleared through the kidneys via PET imaging. Here, we aimed to identify the renal dysfunction due to polyethylene (PE) MP in the kidney tissue. Mice were exposed to 100 ppm (∼equivalent to 0.1 mg/mL)/100 μL of PE for 12 weeks (n = 10). PE uptake in the kidney tissues was confirmed using confocal microscopy. QuantSeq analysis was performed to determine gene expression. Renal function assessment was performed using 99mTc-Diethylene triamine penta acetic acid or 99mTc-Dimercaptosuccinic acid. Measurement of creatinine, BUN, and albumin levels in serum and urine samples was also estimated. [18F]-FDG was also acquired. PE increased expression of Myc, CD44, Programmed Death-Ligand 1 (PD-L1), and Hypoxia-Inducible Factor (HIF)-1α, which indicates a potential link to an increased risk of early-onset cancer. An increase in glucose metabolism of [18F]-FDG were observed. We assessed renal failure using 99mTc-Diethylene triamine penta acetic acid and 99mTc-Dimercaptosuccinic acid scintigraphy to determine the renal function. Renal failure was confirmed using serum and urine creatinine, serum blood urea nitrogen levels, serum albumin levels, and urine albumin levels in PE exposed mice, relative to the control. In sum, PE exposure induced renal dysfunction in a murine model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.