Abstract
Prostate cancer is a serious threat to men's health, so it is necessary to develop the techniques for early detection of this malignancy. Radiolabeled peptides are the useful tools for diagnosis of prostate cancer. In this research, we designed a new HYNIC-conjugated GnRH analogue and labeled it by 99m Tc with tricine/EDDA as coligands. We used aminohexanoic acid (Ahx) as a hydrocarbon linker to generate 99m Tc-(tricine/EDDA)-HYNIC-Ahx-[DLys6 ]GnRH. The radiopeptide exhibited high radiochemical purity and stability in solution and serum. Two human prostate cancer cell lines LN-CaP and DU-145 were used for cellular experiments. The binding specificity and affinity of radiopeptide for LN-CaP were superior to DU-145 cells. The Kd values for LN-CaP and DU-145 cells were 41.91±7.03nM and 55.96±10.56nM, respectively. High kidney uptake proved that the main excretion route of radiopeptide was through the urinary system. The tumor/muscle ratio of 99m Tc-HYNIC-Ahx-[DLys6 ]GnRH was 4.14 at 1hr p.i. that decreased to 2.41 at 4hr p.i. in LN-CaP tumor-xenografted nude mice. The blocking experiment revealed that the tumor uptake was receptor-mediated. The lesion was visualized clearly using 99m Tc-[DLys6 ]GnRH at 1hr p.i. Accordingly, this research highlights the capability of 99m Tc-(tricine/EDDA)-HYNIC-Ahx-[DLys6 ]GnRH peptide as a promising agent for GnRHR-expressing tumor imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.