Abstract
Inevitable interactions with the reservoir largely degrade the performance of entangling gates, which hinders practical quantum computation from coming into existence. Here, we experimentally demonstrate a 99.920(7)%-fidelity controlled-not gate by suppressing the complicated noise in a solid-state spin system at room temperature. We found that the fidelity limited at 99% in previous works results from considering only static classical noise, and, thus, in this work, a complete noise model is constructed by also considering the time dependence and the quantum nature of the spin bath. All noises in the model are dynamically corrected by an exquisitely designed shaped pulse, giving the resulting error below 10^{-4}. The residual gate error is mainly originated from the longitudinal relaxation and the waveform distortion that can both be further reduced technically. Our noise-resistant method is universal and will benefit other solid-state spin systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.