Abstract

The effects of metakaolin (MK) and slag on the strength, shrinkage, chloride resistance and interfacial transition zone microstructure of lightweight aggregate concrete were characterized by a range of analytical techniques. Slag decreased early age strength while MK increased late age strength, which was further increased by the combination of MK and slag. MK was more effective on reducing chloride diffusion coefficient and shrinkage than slag. These properties were further improved by the combination of MK and slag. Linear correlation was observed between strength and chloride diffusion coefficient with higher strength presenting lower diffusion coefficient. Portlandite, ettringite, hemicarboaluminate and monocarboaluminate were identified as hydration products. MK promoted the formation of hemicarboaluminate and monocarboaluminate. Portlandite content decreased at 28 days in concrete with MK and slag, resulting in an interfacial transition zone with denser microstructure and lower Ca/Si ratio, due to the pozzolanic reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.