Abstract

The aim of this paper is to ensure the sensorless control of an inertial storage system associated to an isolated Hybrid Energy Production Unit (HEPU). The Flywheel Energy Storage System (FESS) is used as energy buffers in order to store or retrieve energy into a stand-alone load. A comparative study of three different techniques based on a sensorless vector-controlled induction motor (IM) driving a flywheel are presented. First, a speed estimation algorithm based on model reference adaptive system (MRAS) theory is proposed. Then, a model reference adaptive speed observers is introduced in this paper with an accurate stability study. This observer strategy is then ameliorated with a new reduced adaptive speed observer. The observer parameters are adapted during flux weakening in order to obtain close tracking of the flywheel speed. The accuracy of the presented models is confirmed by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.