Abstract

The 13C12C ratios of fractions with different functionality (saturates, aromatics, polar aromatics and asphaltenes) separated during mild coal-oil coprocessing runs have been determined by stable isotope ratio mass spectrometry on the CO2 produced by quantitative combustion. The proportions of coal-derived carbon in the different fractions can be determined from the difference in natural abundance of 13C between the coal and oil starting materials. The correction of the data for isotope-selective effects between different fractions (based on data from oil-only runs) is discussed. The corrected data support a complex model for the mechanism of coal dissolution, with interactions between the coal reactant and all of the fractions of the soluble run product, together with retrograde reactions incorporating oil-derived carbon into the insoluble coke product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.