Abstract

The Moving-Bed Copper Oxide Process is a dry, regenerable sorbent technique that uses supported copper oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x} emissions from flue gas generated by coal combustion. The process can be integrated into the design of advanced power systems, such as the Low-Emission Boiler System (LEBS) or the High-Performance Power System (HIPPS). This flue gas cleanup technique is currently being evaluated in a life-cycle test system (LCTS) with a moving-bed flue gas contactor at DOE`s Pittsburgh Energy Technology Center. An experimental data base being established will be used to verify reported technical and economic advantages, optimize process conditions, provide scaleup information, and validate absorber and regenerator mathematical models. In this communication, the results from several process parametric test series with the LCTS are discussed. The effects of various absorber and regenerator parameters on sorbent performance (e.g., SO{sub 2} removal) were investigated. Sorbent spheres of 1/8-in diameter were used as compared to 1/16-in sized sorbent of a previous study. Also discussed are modifications to the absorber to improve the operability of the LCTS when fly ash is present during coal combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.