Abstract

Transient natural convection in an enclosure with vertical solutal gradients has been studied in this paper. Transfers in a rectangular cavity configuration translating hydrodynamic and thermal phenomena are numerically predicted by means of computational fluid dynamics (CFD) in transient regime.The objective of this numerical study is to give a fine knowledge of the hydrodynamic and thermal characteristics during energy storage in an enclosure filled with water stratified by downward salinity gradient. The enclosure is divided into three zones with different salinity level such as salt gradient pond (SGP). Water is heated by a heating device at the bottom of the cavity.The Navier–Stokes, energy and mass equations are discretized using finite-volume method, and a two-dimensional analysis of the hydrodynamic and thermal behaviors generated in transient regime in the cavity are performed. The mathematical modelling has allowed the prediction of the storage performances by developing parametrical study in view to search the convective heat transfer coefficient at the bottom of the enclosure. Velocity vector fields show the presence of recirculation zones caused only in the lower region and permit to explain the increase of the temperature in the lower convective zone (LCZ).This study shows also the importance of the salinity in the preservation of the high temperature in the bottom of the cavity, and the important reduction of the phenomenon of thermal transfer across the non-convective zone (NCZ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.