Abstract

The development of advanced coal beneficiation and utilization technologies is being sponsored by the US Department of Energy`s Pittsburgh Energy Technology Center, to encourage the use of the abundant coal reserves. A comprehensive program is being conducted by Combustion Engineering, Inc. (ABB CE), regarding the use of these fuels in existing utility boilers. The preparation process can change the original fuel particle size distribution and hence can affect the combustion and ash deposition behaviors. To evaluate the effects of fine particles independent of the beneficiation process, a Pittsburgh No. 8 coal at three degrees of fineness was selected. Physical, chemical, combustion and fireside characteristics of these fuels were evaluated in laboratory testing. Characterization tests provide the information required to predict the performance and economic impacts of firing these fuels in existing coal and oil-designed utility boilers. Two utility steam generators designed for either coal or oil-firing were selected for performance evaluation. The study units were selected to be representative of a large portion of the current boiler population: a 560 MW coal-designed boiler purchased in 1973; and a 600 MW oil-designed boiler purchased in 1970. Each of these units was previously studied in the DOE Beneficiated Coal Fuels (BCF) evaluationmore » of Spherical Oil Agglomeration Products (SOAP). Both of these units were built by ABB CE, but the fuel related design parameters are similar to those used by other manufacturers. This paper summarizes the results of the performance analysis and describes the economic impacts that can be expected when firing this coal ground to different fineness levels in two utility steam generators.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.