Abstract

Powder River Basin subbituminous coals were burned using conventional and low-NO{sub x} combustion conditions in a drop-tube furnace equipped with a multicyclone ash collection device. Fine ash fractions (< 2 {micro}m in diameter) collected during the tests were analyzed using computer-controlled scanning electron microscopy (CCSEM). Advances in particulate sample preparation methods enabled the CCSEM analysis of individual ash particles with submicron diameters as small as 0.1 {micro}m. The fine ash samples produced from the conventional combustion of coal consisted of discrete spherical particles, whereas particle agglomerates were characteristic of the low-NO{sub x} ash samples. Particle-size distributions of the low-NO{sub x} fine ash fractions were coarser because of the agglomeration. Theoretical light-scattering calculations indicate that for a given coal, the ash produced in low-NO{sub x} conditions causes less opacity as compared to conventional combustion conditions. The following phases were abundant in the ashes: Ca aluminosilicate, Ca aluminate, aluminosilicate, silica, (Ca, Mg)O, CaSO{sub 4}, Na{sub 2} SO{sub 4}, and (Na, K)Cl. Primary mechanisms that produced the fine ash include the thermal metamorphism of small (0.1 to 5 {micro}m) mineral grains and the vaporization and subsequent condensation of organically bound Na, Mg, and Ca, Empirical equations for estimating the concentration of fine ashmore » produced from burning subbituminous coals were formulated into an opacity index based on CCSEM coal mineral and fine ash analyses and on drop-tube furnace testing results. The effects of ash electrical resistivity on electrostatic precipitator collection efficiency are also considered in the index.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call