Abstract

A draft-tube spouted bed bioreactor was developed to investigate the microbial degradation of aqueous phenol using a cyclodextrin-based support material. Bacteria from activated sludge were acclimated to phenol in a continuous stirred tank bioreactor, and then immobilized onto the hydrogel particles within the spouted bed bioreactor. Microorganisms obtained under different operating conditions in both bioreactors were isolated and characterized. Batch phenol degradation assays performed on isolated dominant strains showed that Acinetobacter baumannii was the most resistant to phenol. Microbial population distribution in bioreactors was not only affected by phenol concentration, but also by oxygen availability, the system configuration and the presence of intermediates formed during phenol metabolization. A maximum elimination capacity of 2.79 kg-phenol/m3 d was achieved in the spouted bed bioreactor, with Comamonas acidovorans being the dominant strain during high degradation periods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call