Abstract

Using 31P-MR spectroscopy, abnormalities of cardiac energy metabolism have been demonstrated in patients with dilated cardiomyopathy (DCM). However. a detailed analysis of the correlations among energy metabolism, cardiac hemodynamics and myocardial hypertrophy obtained from 31P-MR, right and left heart catheterization and echocardiography has not been presented, 23 patients with DCM (left ventricular (LV) EF 34 ± 3%; NYHA class 2.7 ± 0.1; SE) underwent right and left heart catheterization and echocardiography ± 3 days before/after MR spectroscopy. Coronary artery disease was ruled out by coronary angiography. ECG-triggered. localized 31 P-MR spectra from the anteroseptal myocardium were acquired at rest (prone position) during 30 min on a 1.5 T Philips Gyroscan MR system using ISIS localization, adiabatic pulses. and a 15 sec repetition time. Peak areas were corrected for T1 effects and for blood contamination. and were determined with Lorentzian line fits in the time domain. Linear correlations between creatine phosphate (CP)/ATP ratios and hemodynamic parameters were calculated. LV pressures and diameters. cardiac output, stroke volume, pulmonary arterial pressures, right atrial pressure and pulmonary arterial oxygen saturation did not correlate with CP/ATP. Thus, our data demonstrate that in DCM, the extent of high-energy phosphate depletion is related to the extent of mechanical dysfunction as well as to LV wall thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.