Abstract

Motivated by experimental hints and theoretical frameworks indicating the existence of an extended Higgs sector, we explore the feasibility of detecting a 95 GeV light Higgs boson decaying into a diphoton within the minimal dilaton model at the 14 TeV LHC. Initially, we identify the correlations between the production cross section, decay branching ratios, and model parameters, e.g., the scalar mixing angle . Subsequently, we utilize Monte Carlo simulations to generate the signal of the light Higgs boson via the process, along with the corresponding backgrounds. To effectively separate the signal from the dominant backgrounds , we employ a meticulous cut-based selection process. Ultimately, we find that with an integrated luminosity of , the regions of can be covered over the level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.