Abstract

Five out of seven marine microalgal species investigated were found to biosynthesize nonhydrolysable, mainly aliphatic, biomacromolecules (algaenans). The molecular structure of the algaenan isolated from the microalga Nannochloropsis salina of the class Eustigmatophyceae was determined by solid state 13C NMR spectroscopy, Curie point pyrolysis-gas chromatography-mass spectrometry, and chemical degradations with HI and RuO4. The structure is predominantly composed of C28-C34 linear chains linked by ether bridges. The algaenan isolated from a second eustigmatophyte (Nannochloropsis sp.) was structurally similar. Algaenans isolated from two chlorophytes also possess a strongly aliphatic nature, as revealed by the dominance of alkenes/alkanes in their pyrolysates. Accordingly, we propose that the aliphatic character of numerous Recent and ancient marine kerogens reflects selectively preserved algaenans and that these algaenans may act as a source of n-alkanes in marine crude oils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.