Abstract

Abstract CMV is the most clinically significant viral infection in HCT recipients. Control CMV reactivation after HCT is highly dependent on CMV-specific T cells. Despite dramatic technical advances, the clinical utility of functional assays of virus-specific T cells to predict CMV reactivation following HCT remains to be established. Using 13-color flow cytometry, we studied CD8+T cell responses to pp65 and IE-1 CMV peptide stimulation in cryopreserved PBMC from three clinically distinct subgroups (n=10 each) of HCT patients: 1) Elite Controllers (EC) : CMV seropositive (R+) recipients who never reactivated CMV based on weekly surveillance testing; 2) Spontaneous Controllers (SC): CMV R+ recipients who spontaneously resolved low-grade viremia ( 1,000 IU/mL) requiring antiviral therapy. NC had lower numbers of CD8+ T cells that simultaneously produced 3-4 cytokines in response to CMV peptides compared to EC and SC (18, 26 and 34%, respectively) suggesting that progressive CMV viremia is associated with loss of CD8+ T cell polyfunctionality. Among 15 possible cytokine signatures, we identified two CMV-specific CD8+ T cell cytokine signatures, measured at day +30, that were strongly associated with the risk of CMV reactivation (Fig. 1): i) the non-protective signature (NPS) consisting of IL-2negIFNγposTNFαnegMIP-1βpos CD8+ T cells was positively associated with CMV reactivation (4.9% of CMV-specific CD8+ T cells vs. 19.4 P=0.002 for EC vs. SC/NC; 4.9 vs. 10.8 P=0.02 for EC vs. SC; 4.9 vs. 22.8 P=0.005 for EC vs. NC for pp65 stimulated cells; similar trends were observed in IE-1 stimulated cells); ii) the protective signature (PS) consisted of quadruple producers (IL-2posIFNγposTNFαposMIP-1βpos), and was significantly reduced among NC vs. SC following pp65 and IE-1 stimulation (0.05% of CMV-specific CD8+ T cells vs. 2.85 for pp65, P= 0.02; 0 vs. 1.25 for IE-1, P= 0.02); this association was also found in superantigen-stimulated cells. Production of IFNγ alone or in combination did not predict reactivation (P=0.49). Since NC trended toward more frequent recurrence of CMV viremia compared to SC (60 vs. 10%, respectively; P=0.06), we explored the association between PS and NPS and number of episodes of CMV reactivation (Fig. 1). We observed a significant stepwise increase in the levels of the NPS in pp65-stimulated cells in patients who experienced 0 vs. 1 and ≥2 episodes of CMV reactivation (4.9, 18.3 P=0.002, and 22.4 P=0.06). In addition, patients with ≥2 episodes of CMV had the lowest levels of the PS across groups (0 vs. 2.2% for ≥2 vs. 1 episode P=0.02). Similar trends were observed in IE-1 stimulated cells. Whereas T-cell depletion, aGVHD, lymphoid malignancy and CMV donor serostatus were not associated with risk of CMV in this small cohort, a NPS >10% was associated with increased risk of CMV reactivation (OR: 21, CI95 2-215; P=0.01) and need for treatment (OR: 14, CI95 1.5-137; P=0.02); and a PS >2% was associated with trend toward reduced risk of need for treatment (OR: 0.1, CI95 0.01-1.05; P=0.06). Multivariable modeling was not performed due to sample size. Time to event curves showed that high levels of NPS (>10%) predicted risk of CMV reactivation (log-rank P=0.0002). This remained true in analyses restricted to patients with CMV reactivation after day 30 (log-rank P=0.01). High levels of NPS or low levels of PS ( 18 graft products were available. As expected CMV-specific responses were not detected in grafts from CMV seronegative donors. Among the 9 CMV seropositive grafts, NPS expression was null across groups suggesting that the NPS is an immune phenotype that is absent in healthy donors; there was a stepwise decrease in the number of quadruple producer CD8+ T cells in CMV seropositive grafts for EC, SC and NC: 3.4 (n=3), 2 (n=4) and 0 (n=2), respectively, suggesting that donor PS might influence recipient reactivation. In conclusion, we have identified two novel CMV-specific CD8+ T cell cytokine signatures with robust predictive value for risk of CMV reactivation and need for treatment. These biomarkers might be useful in guiding clinical decision making in HCT recipients. Download : Download high-res image (161KB) Download : Download full-size image Disclosures No relevant conflicts of interest to declare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call