Abstract

This study deals with the properties of a new molecular architecture for organic thin film transistors obtained by introducing 10-decylanthr-9-yl-ethynyl moieties at the anthracene 9,10 positions. The resulting structure, formally a ter-anthrylene-ethynylene (D3ANT), is stable and endowed with sufficient solubility to guarantee the formation of good quality films. The molecule was characterised by 1H NMR, mass spectrometry, IR, UV–vis and photoluminescence both in solution and in the solid state. Cyclic voltammetry measurements, combined with solution UV–vis, permitted the evaluation of HOMO and LUMO energy levels. A series of D3ANT-based OTFT devices were built both in bottom and top contact configurations by a spin coating technique. Top contact OTFT devices exhibited the best semiconducting characteristics, showing an average mobility of 1.2 × 10−2 cm2 V−1 s−1 with on–off ratios higher then 104, while the highest mobility obtained was 0.055 cm2 V−1 s−1. AFM thin-film characterization showed evidence of a granular structure. High-resolution STM images of D3ANT monolayers adsorbed on Au(111) and HOPG reveal highly-ordered self-organized domains with molecules lying flat on the substrates, but, remarkably, no reflections were recorded by out-of plane GIXRD of spin coated films on SiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.