Abstract

BackgroundEvidence shows that microwaves radiation may have various biological effects on central nervous system. Role of electromagnetic fields in neurodegenerative diseases, especially AD, has been widely studied, but results of these studies are inconsistent. Therefore, the above effects were verified again and the mechanism was preliminarily discussed. MethodsAmyloid precursor protein (APP/PS1) and WT mice were exposed to long-term microwave radiation for 270 days (900 MHz, SAR: 0.25–1.055 W/kg, 2 h/day, alternately), and related indices were assessed at 90, 180 and 270 days. Cognition was evaluated by Morris water maze, Y maze and new object recognition tests. Congo red staining, immunohistochemistry and ELISA were used to analyze Aβ plaques, Aβ40 and Aβ42 content. Differentially expressed proteins in hippocampus between microwave-exposed and unexposed AD mice were identified by proteomics. ResultsSpatial and working memory was improved in AD mice after long-term 900 MHz microwave exposure compared with after sham exposure. Microwave radiation (900 MHz) for 180 or 270 days did not induce Aβ plaque formation in WT mice but inhibited Aβ accumulation in the cerebral cortex and hippocampus in 2- and 5-month-old APP/PS1 mice. This effect mainly occurred in the late stage of the disease and may have been attributed to downregulation of apolipoprotein family member and SNCA expression and excitatory/inhibitory neurotransmitter rebalance in the hippocampus. ConclusionsThe present results indicated that long-term microwave radiation can retard AD development and exert a beneficial effect against AD, suggesting that 900 MHz microwave exposure may be a potential therapy for AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call