Abstract

Radio-over- fibre (RoF) technology is receiving large attention due to its ability to provide simple antenna front ends, increased capacity and increased wireless access coverage. Coherently detected RoF systems would enable the information to be carried in both the amplitude and phase or in different states of the polarisation of the optical field. Additionally, the selectivity of coherent receiver is very well suited for access networks. We present a 90° optical hybrid built on a silicon-on-insulator planar light-wave circuit, which can be used as the optical front end of the digital coherent receiver in a digitised RoF link and will lead to reduced receiver footprint and cost. The optical hybrid circuit includes 2 × 2 and 4 × 4 multimode interference (MMI) splitters, in a polarisation diversity configuration. The simulation results at vacuum wavelength 1,550 nm show polarisation independence and phase errors between the ports of less than 0.03°. The properties of the prototyped 4 × 4 MMI were measured over a wide range of wavelengths. The 2 × 2 and 4 × 4 MMI showed nearly equal splitting ratios. Measurements of the relative phase relationship between the ports for Transverse Electric mode polarisation are shown to match the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.