Abstract

9-Ethyladenine was used as the basis for a series of non-xanthine adenosine receptor antagonists at human adenosine receptors. The adenine-based compounds were substituted in 2- or 8-position with a variety of side chains including some aryl or arylalkynyl groups previously tested as 2-substituents in adenosine and 5'-N-ethylcarboxamidoadenosine (NECA) for their effect on agonist affinity. The affinity of the novel compounds was tested in radioligand binding assays (A1, A2A and A3) and inhibition of NECA-stimulated adenylyl cyclase activity (A2B) in membranes prepared from CHO cells stably transfected with the respective human receptor subtype. High affinity antagonists were identified for A1 (9-ethyl-8-phenyl-9H-adenine, compound 2; 6-(1-butylamino)-9-ethyl-8-phenyl-9H-purine, compound 3), A2A (8-ethoxy-9-ethyladenine; compound 8) and A3 (9-ethyl-8-phenylethynyl-9H-adenine, compound 5) with selectivities versus other receptor subtypes in the range of 10 to 600. These results demonstrate that adenine is a useful template for further development of high-affinity antagonists with distinct receptor selectivity profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call