Abstract

Abstract vitamin D receptor (VDR) and retinoid X receptor (RXR) heterodimerize to mediate the genomic actions of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3), calcitriol), the biologically active form of vitamin D(3). In this study, we show that 9-cis retinoic acid (9-cisRA), the ligand for RXR, accelerates calcitriol-induced expression of osteocalcin gene, the marker for mature osteoblasts. Calcitriol and its synthetic analog KH1060 (1 nM) induced osteocalcin secretion after a 96-h incubation period as detected by radioimmunoassay. When these compounds were used together with 9-cisRA, osteocalcin protein secretion was, however, detected already after 72 and 48 h, respectively. Detection of osteocalcin mRNA with quantitative PCR revealed elevated mRNA levels already after a 4-h treatment of the cells with calcitriol, KH1060, or 9-cisRA compared with untreated cells. In combination treatments, 9-cisRA rapidly stimulated osteocalcin mRNA synthesis induced by the different vitamin D(3) compounds. In MG-63 cells treated with calcitriol or KH1060, the stimulation was maximal after the first 4 h and diminished thereafter. In fact, after the 48-h incubation 9-cisRA reduced osteocalcin mRNA levels in KH1060-treated cells, the amount of mRNA being only 44% of the levels obtained with KH1060 alone. The reduction was accompanied by an increased degradation rate of both VDR and RXRbeta in the presence of 9-cisRA. Furthermore, 9-cisRA increased the formation of RXRbeta-VDR-VDRE complex on the osteocalcin gene VDRE. These results suggest that 9-cisRA accelerates calcitriol-induced osteocalcin production in human osteoblastic cells through increased formation of transcriptionally active chromatin complexes and, subsequently, promotes degradation of the heterodimeric complex of VDR and RXR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call