Abstract

Organoboron compounds are extensively used in organic synthesis. The alkenylboronic acid pinacol esters formed from the hydroboration reaction of alkynes with pinacolborane are stable, easy to handle, and useful in many synthetic transformations. However, pinacolborane lacks the reactivity necessary to undergo facile hydroboration reaction with terminal aromatic alkynes. 9-Borobicyclo[3.3.1]nonane (9-BBN) can be used to catalyze the hydroboration reaction of phenylacetylene with pinacolborane. The hydroboration reaction parameters and product purification conditions were evaluated to maximize the yield of (E)-2-phenylethenylboronic acid pinacol ester. It was found that the optimal reaction conditions for the 9-BBN-catalyzed hydroboration of phenylacetylene with pinacolborane were: phenylacetylene (1.0 equiv), pinacolborane (1.2 equiv), 9-BBN (20 mol%), and THF [0.2] at 65 °C. The compatibility of these reaction conditions with p-substituted terminal aromatic alkynes bearing electronically diverse groups was studied. Moderate to good yield (49–76%) of the hydroboration products were isolated after purification by liquid-liquid extraction and flash chromatography. KEYWORDS: Organic Synthesis; Catalysis; Methods Development; Hydroboration; Reaction Optimization; Alkenylboronic Ester; Alkyne; Pinacolborane; 9-Borobicyclo[3.3.1]nonane

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call