Abstract
Exposure of cultured human granulosa cells to 8-bromoadenosine cyclic 3',5'-phosphate (8-bromo-cAMP) resulted in a rapid increase in the content of the mRNA for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in the de novo synthesis of cholesterol. HMG-CoA reductase mRNA levels increased within 2 h of stimulation and remained elevated for at least 6 h. Treatment of granulosa cells with 25-hydroxycholesterol, a soluble cholesterol analogue, in combination with aminoglutethimide to block conversion of cellular sterols to pregnenolone, resulted in suppression of HMG-CoA reductase mRNA. When cells were stimulated with 8-bromo-cAMP in the presence of 25-hydroxycholesterol and aminoglutethimide, the increase in HMG-CoA reductase mRNA provoked by the tropic agent was markedly attenuated. This indicates that 8-bromo-cAMP raises HMG-CoA reductase mRNA levels indirectly by accelerating steroidogenesis and depleting cellular sterol pools, thus relieving sterol-mediated negative feedback of HMG-CoA reductase gene expression. 25-Hydroxycholesterol in the presence of aminoglutethimide suppressed low-density lipoprotein (LDL) receptor mRNA, but 8-bromo-cAMP effected a significant stimulation of LDL receptor mRNA levels when added with hydroxysterol and aminoglutethimide. These findings reveal differential regulation of HMG-CoA reductase and LDL receptor mRNAs in the presence of sterol negative feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.