Abstract

AbstractHydroxyapatite (HA) nanoparticles have been studied due to their high biocompatibility, similarity with bone tissue, and their capacity for bone regeneration since these nanoparticles can easily adhere on osteosarcoma and osteoblast cells, promoting osteoblast growth and osteosarcoma cell uptake. These materials may still accumulate spontaneously and selectively in regions of bone tumors through the enhanced permeability and retention effect. HA also allows the incorporation of strontium in your network. Strontium as a biochemical analog of calcium can maintain the osteogenesis characteristics of HA allowing the production of the radioactive isotopes strontium‐89 and phosphorus‐32 through neutron irradiation. These radioisotopes are beta emitters that enable the treatment of bone tumors, while the affected region is regenerated. In this work, we investigated the synthesis of strontium‐doped HA nanorods through the hydrothermal coprecipitation method as a potential therapeutic agent for bone tumors. All materials were successfully obtained and demonstrated high cell viability, maintaining the osteogenic capacity, making these materials promising agents for the specific treatment of bone tumors. The results indicate that the Sr provides an increase in therapeutic potential due to its beta emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.