Abstract

In an effort to understand the role of key eicosanoid-forming enzymes in the activation of peroxisome proliferator-activated receptor (PPAR), this study was designed to evaluate the possible contributions of cytosolic phospholipase A(2) (cPLA(2)) and group IIA secretory phospholipase A(2) (sPLA(2)) in the regulation of PPAR-mediated gene transcription in a human hepatoma cell line (HepG2). The HepG2 cells express both PPAR-alpha and -gamma but not PPAR-beta. Overexpression of cPLA(2), but not group IIA sPLA(2) in the HepG2 cells, caused a significantly increased PPAR-alpha/gamma-mediated reporter activity. Antisense inhibition of cPLA(2) resulted in a significantly decreased PPAR-alpha/gamma activity. The PPAR-alpha/gamma-induced gene transcription in the HepG2 cells was inhibited by the cPLA(2) inhibitors methyl arachidonyl fluorophosphonate and arachidonyltrifluoromethyl ketone, but not by the sPLA(2) inhibitor LY311727. The expression of PPAR-alpha-mediated endogenous gene apolipoprotein A-II was increased in cells with overexpression of cPLA(2), decreased in cells with antisense inhibition of cPLA(2), but unaltered in cells with overexpression of group IIA sPLA(2). The above results demonstrated an important role of cPLA(2), but not group IIA sPLA(2) in the control of PPAR activation. The cPLA(2)-mediated PPAR activation was likely mediated by arachidonic acid and prostaglandin E(2). This study reveals a novel intracellular function of cPLA(2) in PPAR activation in HepG2 cells. The cPLA(2) thus may represent a potential therapeutic target for the control of PPAR-related liver and metabolic disorders such as obesity, lipid metabolic disorders, diabetes mellitus, and atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call