Abstract

The perpendicular diffusion coefficient is calculated by combining a recently developed Unified Nonlinear Transport (UNLT) theory with the Newton–Lorentz equation. The total perpendicular mean free path can be described as a combination of a guiding center contribution and a microscopic contribution. It is shown that the total mean free path depends strongly on the energy range of the turbulence power spectrum and on particle energy. Further, a slab/2D composite model is used to investigate the influence of each contribution to the total mean free path for a quasi-3D turbulence model. For pure 2D turbulence the UNLT reduces to the NLGC-theory. For pure slab turbulence the guiding center contribution is subdiffusive in accordance with simulations and the theorem on reduced dimensionality. Conversely, the microscopic contribution is non-zero, which has to be interpreted as normal diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call