Abstract

Cross sections for inelastic transfer between the 82D3/2 and 82D5/2 fine-structure states in rubidium, induced in resonant collisions with ground-state Rb atoms, have been determined using an experimental method involving two-photon excitation of atomic fluorescence. Rubidium vapor in a fluorescence cell was irradiated with pulses of 641 nm radiation from a N2 laser-pumped dye-laser tuned to excite one of the 82D states. The resulting fluorescence included the direct component originating from the optically excited state and a sensitized component arising from the other fine-structure state populated by collisions. Relative intensities of the fluorescent components, determined by photon-counting techniques, yielded the cross sections for excitation transfer: Q(2D3/2 → 2D5/2) = 8.1 × 10−13 cm2; Q(2D3/2 ← 2D5/2) = 5.5 × 1013 cm2; as well as [Formula: see text], the effective quenching cross section. The excitation transfer cross sections which are considered accurate to within ±20% are in the ratio predicted by the principle of detailed balancing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.