Abstract

Kinesin and ncd (non-claret disjunctional) are microtubule associated motor proteins which share several structural features: both motors are dimers; each monomer is composed of a stalk region, a cargo binding domain and a motor domain; the motor domains have ∼41% sequence identity. Despite these similarities the two motors have strikingly different movement properties: kinesin is a plus-end directed molecular motor, while ncd is minus-end directed. Here we compare the structure and the microtubule-binding properties of these oppositely directed molecular motors. We determined the three-dimensional structure of tubulin sheets decorated with the motor domains of either kinesin or ncd to a resolution of <20 Å by negative stain electron microscopy and tilt series reconstruction. Comparisons with a control structure of tubulin alone revealed that in both cases the motor domain binds to the outer crest of a single protofilament making contacts with both α and β tubulin. Despite their opposite directionality, the geometry of attachment of the motor domain to the protofilament in the presence of AMP-PNP is very similar for both motors. These data rule out models for directionality which have the motors binding in an opposite orientation to the microtubules. Binding of the ncd as well as the kinesin motor domain appears to induce conformational changes in tubulin. This observation suggests an active role of tubulin in motor movement and/or in the determination of directionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.