Abstract

Collecting higher-quality three-dimensional points-cloud data in various scenarios practically and robustly has led to a strong demand for such dToF-based LiDAR systems with higher ambient noise rejection ability and limited optical power consumption, which is a sharp conflict. To alleviate such a clash, an idea of utilizing a strong ambient noise rejection ability of intensity and RGB images is proposed, based on which a lightweight CNN is newly, to the best of our knowledge, designed, achieving a state-of-the-art performance even with 90 × less inference time and 480 × fewer FLOPs. With such net deployed on edge devices, a complete AI-LiDAR system is presented, showing a 100 × fewer signal photon demand in simulation experiments when creating depth images of the same quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.