Abstract

The tight-binding method is used to investigate the electronic and magnetic properties of borophene nano-ribbons (BNRs) in the presence of a perpendicular magnetic field. Most BNRs exhibit metallic characteristics due to edge bands. Additionally, the appearance of Landau levels (LLs) is strongly influenced by the edge states, contrasting with the sheet platform which produces distinct LLs. We also investigated single atomic vacancy disorders in BNRs and observed localized vacancy states (LVSs) resulting from atomic disorder. Both LVSs and LLs are influenced by the edge states, underscoring that the electronic and magnetic properties of BNRs are strongly edge-dependent. This aspect is crucial for consideration in experimental, theoretical, and computational studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.