Abstract
AimTo identify mtDNA and OGG1 as potential biomarker candidates for mechanical asphyxia. MethodThe human tissues are divided into experimental group (hanging and strangulation) and control groups (hemorrhagic shock, brain injury group, and poisoning group). Detected the expression of OGG1 and integrity of mtDNA in cardiac tissue of each group. We used over-OGG1 vector and siRNA-OGG1 transfecting H9C2 cell line to observe the function of OGG1 in hypoxic cells. Results1. mtDNA integrity decreased in the mechanical asphyxia group, OGG1 expression increased in mechanical asphyxia groups. They can be biomarkers for mechanical asphyxia. 2. OGG1 increased first and decreased in hypoxia-induced H9C2 cells. OGG1 upregulated the TFAM, NRF1, and Bcl2 in hypoxia-induced H9C2. OGG1 downregulated cleaved-Caspase3 in hypoxia-induced H9C2 cells. 3. In the normoxia condition, NAC maintained mtDNA integrity and decreased the mitochondrial membrane potential and amount of ATP. ConclusionmtDNA integrity and OGG1 expression can be biomarkers for mechanical asphyxia. OGG1 can maintain mtDNA integrity and maintain the stability of the mitochondrial membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.