Abstract

Prepulse inhibition (PPI) is a measure of sensorimotor gating that is deficient in schizophrenia. In rats, administration of the serotonin-1A (5-HT 1A) receptor agonist, 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT), causes a disruption of PPI. It is unclear whether this effect is due to the activation of pre- or post-synaptic 5-HT 1A receptors, however pre-synaptic receptors located in the dorsal raphe nucleus (DRN) may play a role. Our previous research showed that castrated rats have a reduced sensitivity to 8-OH-DPAT-induced disruptions of PPI. Therefore, in Experiment 1, male Sprague–Dawley rats were sham-operated or castrated and micro-injected with 8-OH-DPAT directly into the DRN. In Experiment 2, male rats were sham-operated or received a selective serotonergic, 5,7-dihydroxytryptamine lesion of the DRN. 8-OH-DPAT was injected subcutaneously in these rats. In both sham-operated and castrated rats, a micro-injection of 8-OH-DPAT into the DRN did not disrupt PPI. Instead, in castrated rats, 8-OH-DPAT treatment tended to increase PPI. A DRN lesion caused a significant reduction in 5-HT content in the frontal cortex (70% reduction), striatum (69%) and ventral hippocampus (76%). In both sham-operated and DRN-lesioned rats, systemic 8-OH-DPAT significantly disrupted PPI. Taken together, these data suggest that the disruption of PPI observed in rats with systemic 8-OH-DPAT treatment is predominantly due to an activation of post-synaptic, rather than pre-synaptic, 5-HT 1A receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.